Constructions of point-colour-symmetric graphs
نویسندگان
چکیده
منابع مشابه
Constructions of antimagic labelings for some families of regular graphs
In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.
متن کاملClassifying pentavalnet symmetric graphs of order $24p$
A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملOn constructions of hypotraceable graphs
A graph G is hypohamiltonian/hypotraceable if it is not hamiltonian/traceable, but all vertex deleted subgraphs of G are hamiltonian/traceable. Until now all hypotraceable graphs were constructed using hypohamiltonian graphs; extending a method of Thomassen [8] we present a construction that uses so-called almost hypohamiltonian graphs (nonhamiltonian graphs, whose vertex deleted subgraphs are ...
متن کاملPoint-sensitive and point-free patch constructions
Using the category of frames we consider various generalizations of the patch space of a topological space. Some of these constructions are old and some are new. We consider how these variants interact and under what circumstances they agree.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1979
ISSN: 0095-8956
DOI: 10.1016/0095-8956(79)90077-7